372 research outputs found

    Weyl corrections to holographic conductivity

    Full text link
    For conformal field theories which admit a dual gravitational description in anti-de Sitter space, electrical transport properties, such as conductivity and charge diffusion, are determined by the dynamics of a U(1) gauge field in the bulk and thus obey universality relations at the classical level due to the uniqueness of the Maxwell action. We analyze corrections to these transport parameters due to higher-dimension operators in the bulk action, beyond the leading Maxwell term, of which the most significant involves a coupling to the bulk Weyl tensor. We show that the ensuing corrections to conductivity and the diffusion constant break the universal relation with the U(1) central charge observed at leading order, but are nonetheless subject to interesting bounds associated with causality in the boundary CFT.Comment: 15 pages, v2: references adde

    FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

    Full text link
    We introduce an improved version of the simulation code FEWZ (Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading-order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a signifcantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts.Comment: 29 pages, 13 figure

    Oxygenated versus non-oxygenated flush out and storage of donor livers:An experimental study

    Get PDF
    Background: During donor organ procurement and subsequent static cold storage (SCS), hepatic adenosine triphosphate (ATP) levels are progressively depleted, which contributes to ischemia-reperfusion injury (IRI). We sought to investigate a simple approach to prevent ATP depletion and IRI using a porcine donation after circulatory death (DCD) liver reperfusion model. Methods: After 30 min warm ischemia, porcine livers were flushed via the portal vein with cold (4 degrees C) non-oxygenated University of Wisconsin (UW) preservation solution (n = 6, control group) or with oxygenated UW (n = 6, OxyFlush group). Livers were then subjected to 4 h SCS in non-oxygenated (control) or oxygenated (OxyFlush) UW, followed by 4 h normothermic reperfusion using whole blood. Hepatic ATP levels were compared, and hepatobiliary function and injury were assessed. Results: At the end of SCS, ATP was higher in the OxyFlush group compared to controls (delta ATP of +0.26 vs. -0.68 mu mol/g protein, p = 0.04). All livers produced bile and metabolized lactate, and there were no differences between the groups. Grafts in the OxyFlush group had lower blood glucose levels after reperfusion (p = 0.04). Biliary pH, glucose and bicarbonate were not different between the groups. Injury markers including liver transaminases, lactate dehydrogenase, malondialdehyde, cell-free DNA and flavin mononucleotide in the SCS solution and during reperfusion were also similar. Histological assessment of the parenchyma and bile ducts did not reveal differences between the groups. Conclusion: Oxygenated flush out and storage of DCD porcine livers prevents ATP depletion during ischemia, but this does not seem sufficient to mitigate early signs of IRI

    Integrative omics reveals subtle molecular perturbations following ischemic conditioning in a porcine kidney transplant model

    Get PDF
    BACKGROUND: Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS: Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS: In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS: Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12014-022-09343-3

    Ex Situ Dual Hypothermic Oxygenated Machine Perfusion for Human Split Liver Transplantation

    Get PDF
    Liver splitting allows the opportunity to share a deceased graft between 2 recipients but remains underutilized. We hypothesized that liver splitting during continuous dual hypothermic oxygenated machine perfusion (DHOPE) is feasible, with shortened total cold ischemia times and improved logistics. Here, we describe a left lateral segment (LLS) and extended right lobe (ERL) liver split procedure during continuous DHOPE preservation with subsequent transplantation at 2 different centers. Methods: After transport using static cold storage, a 51-year-old brain death donor liver underwent end-ischemic DHOPE. During DHOPE, the donor liver was maintained 106 kPa. An ex situ ERL/LLS split was performed with continuing DHOPE throughout the procedure to avoid additional ischemia time. Results: Total cold ischemia times for the LLS and ERL were 205 minutes and 468 minutes, respectively. Both partial grafts were successfully transplanted at 2 different transplant centers. Peak aspartate aminotransferase and alanine aminotransferase were 172 IU/L and 107 IU/L for the LLS graft, and 839 IU/L and 502 IU/L for the ERL graft, respectively. The recipient of the LLS experienced an episode of acute cellular rejection. The ERL transplantation was complicated by severe acute pancreatitis with jejunum perforation requiring percutaneous drainage and acute cellular rejection. No device-related adverse events were observed. Conclusions: Liver splitting during continuous DHOPE preservation is feasible, has the potential to substantially shorten cold ischemia time and may optimize transplant logistics. Therefore liver splitting with DHOPE can potentially improve utilization of split liver transplantation

    Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome

    Get PDF
    Assessment of donor kidney quality is based on clinical scores or requires biopsies for histological assessment. Noninvasive strategies to identify and predict graft outcome at an early stage are, therefore, needed. We evaluated the perfusate of donation after brain death (DBD) kidneys during nonoxygenated hypothermic machine perfusion (HMP). In particular, we compared perfusate protein profiles of good outcome (GO) and suboptimal outcome (SO) 1-year post-transplantation. Samples taken 15 min after the start HMP (T1) and before the termination of HMP (T2) were analysed using quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). Hierarchical clustering of the 100 most abundant proteins showed discrimination between grafts with a GO and SO at T1. Elevated levels of proteins involved in classical complement cascades at both T1 and T2 and a reduced abundance of lipid metabolism at T1 and of cytoskeletal proteins at T2 in GO versus SO was observed. ATP-citrate synthase and fatty acid-binding protein 5 (T1) and immunoglobulin heavy variable 2-26 and desmoplakin (T2) showed 91% and 86% predictive values, respectively, for transplant outcome. Taken together, DBD kidney HMP perfusate profiles can distinguish between outcome 1-year post-transplantation. Furthermore, it provides insights into mechanisms that could play a role in post-transplant outcomes.</p

    Observation of Parametric Instability in Advanced LIGO

    Get PDF
    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress

    Restoration of Bile Duct Injury of Donor Livers During Ex Situ Normothermic Machine Perfusion

    Get PDF
    BACKGROUND: End-ischemic ex situ normothermic machine perfusion (NMP) enables assessment of donor livers prior to transplantation. The objective of this study was to provide support for bile composition as a marker of biliary viability and to investigate whether bile ducts of high-risk human donor livers already undergo repair during NMP.METHODS: Forty-two livers that were initially declined for transplantation were included in our NMP clinical trial. After NMP, livers were either secondary declined (n = 17) or accepted for transplantation (n = 25) based on the chemical composition of bile and perfusate samples. Bile duct biopsies were taken before and after NMP and assessed using an established histological injury severity scoring system and a comprehensive immunohistochemical assessment focusing on peribiliary glands (PBGs), vascular damage, and regeneration.RESULTS: Bile ducts of livers that were transplanted after viability testing during NMP showed better preservation of PBGs, (micro)vasculature, and increased cholangiocyte proliferation, compared with declined livers. Biliary bicarbonate, glucose, and pH were confirmed as accurate biomarkers of bile duct vitality. In addition, we found evidence of PBG-based progenitor cell differentiation toward mature cholangiocytes during NMP.CONCLUSIONS: Favorable bile chemistry during NMP correlates well with better-preserved biliary microvasculature and PBGs, with a preserved capacity for biliary regeneration. During NMP, biliary tree progenitor cells start to differentiate toward mature cholangiocytes, facilitating restoration of the ischemically damaged surface epithelium.</p
    • …
    corecore